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ABSTRACT 

The complex permittivity (ε ) and permeability ( µ ) of a material determines the response 

of the material to electromagnetic radiation. In many cases, the real part of ε  and µ  are 

both positive for materials that can be found in nature. Metamaterials (MTMs) are 

engineered media that are designed to have either a negative permittivity or a negative 

permeability or both. Negative permittivity and permeability cause electromagnetic 

waves travelling through this medium to exhibit unusual characteristics. 

The zero specular reflection layers using double negative (DNG) materials were 

examined in the first part of this thesis. The equations related to specular absorbers are 

analyzed based on the transmission line approach and numerical solutions are used in 

order to generate universal design charts for zero specular reflection absorbers. A 

MATLAB program is developed in order to generate the universal curves for double-

positive (DPS) and DNG materials. 

Several methods to extract the effective permittivity and permeability of both 

normal materials and MTMs from measured or simulated scattering parameters were 

examined in the second part of this thesis. Microwave Studio (MWS) by Computer 

Simulation Technology (CST) was used to model the materials in a free space 

environment in order to calculate the S-parameters ( 11S  and 21S ) from which the 

constitutive parameters andµ ε  can be extracted. The results were compared to 

published data. 
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EXECUTIVE SUMMARY 

In recent years, there has been an increasing interest in the research and the development 

of new materials with characteristics that may not be found in nature. Examples of these 

materials are metamaterials (MTMs), left-handed (LH) media and negative–index 

materials (NIM). They have many applications not only in scientific areas but also in 

industrial areas. Some examples of these applications include artificial dielectrics, lens, 

absorbers, antenna structures, optical and microwave components, frequency-selective 

surfaces, and composite materials. In this thesis, we examine lossy MTMs and their use 

as a radar absorbing material (RAM).  

First, an analysis of the basic characteristics of MTMs is presented and the 

properties of MTMs are discussed. A classification of lossy MTM depending on the sign 

of index of refraction and the signs of the complex permittivity r r rjε ε ε′ ′′= −  and 

permeability r r rjµ µ µ′ ′′= −  is defined in terms of r r r rA ε µ ε µ′ ′ ′′ ′′= −  and r r r rB ε µ ε µ′ ′′ ′′ ′= +  

parameters. A classification of double positive (DPS), double negative (DNG) and single 

negative (SNG) materials with the triads of RH and LH is visualized by using the axis of 

A  and B . When 0B < , both the phase constant β  and the refractive index n  are 

negative, and when 0B >  the phase constant and the refractive index are both positive. 

The parameter A  is negative in SNG materials but can be positive or negative in DPS 

and ENG materials. 

Next, an analysis of zero specular absorbers is presented. The equations related to 

specular absorbers are derived based on transmission line theory. Numerical solutions of 

the equations are used to generate the universal design curves for zero specular reflection 

layers, and a solution of a transcendental equation is given for a perfect electric conductor 

(PEC) backing. Furthermore, a solution for the transcendental equations for both DPS 

and DNG layers is programmed in MATLAB in order to examine the solutions for the 

layer parameters. A comparison between DPS and DNG solutions reveals a symmetry  

 

 



 xvi 

between DPS and DNG layers. From the final versions for the transcendental equations 

for DPS and DNG layers, we can conclude that the DNG solutions are the complex 

conjugate of DPS solutions. 

Finally, a retrieval program is used to extract the permittivity and permeability of 

MTM models that were simulated in Microwave Studio (MWS). A brief summary of the 

relationship between the S -parameters in the free space environment and andµ ε  is 

given. These equations were programmed in MATLAB. Different types of materials, 

including “normal” materials and MTMs, are simulated in MWS, and the results are 

exported to the MATLAB program in order to extract the real and the imaginary parts of 

the permittivity, permeability, index of refraction and impedance. Also, a calculation of 

the resonant frequency, the frequency in which the effective permeability becomes 

negative and the left-handed behavior becomes evident, is given. A comparison between 

the simulation data and the published data is presented. 

 The results using simulated scattering parameters were in good agreement with 

available published data when electric and magnetic boundaries were used in MWS. 

Agreement was not good when using unit cell boundaries and Floquet modes. This 

discrepancy is likely due to the form of the Floquet mode fields and how they are 

converted to scattering parameters data for use in the MATLAB script. This should be 

investigated further in subsequent research. 
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I. INTRODUCTION  

A. OVERVIEW 

In the frequency domain, all materials can be described electrically by their 

complex permittivity (ε ) and permeability ( µ ). These two basic parameters determine 

the response of the material to electromagnetic (EM) radiation. In most cases, the real 

parts of ε  and µ  are both positive for materials that can be found in nature. While some 

materials can have negative ε , materials having negative µ  are less common than 

negative-ε -materials, including ferromagnetic and antiferromagnetic resonant systems 

[1]. Over 30 years ago, the Russian physicist Victor Veselago postulated the existence of 

a material in which both the permittivity and permeability were assumed to have negative, 

real values (negative index of refraction). They are called double-negative (DNG) 

materials.  

Metamaterials (MTMs) is a general term for artificial media that are designed to 

have either a negative permittivity or permeability, or both. The term derives from the 

Greek word meta, meaning beyond. According to [2], “MTMs are macroscopic 

composites having man-made, three dimensional, periodic cellular architecture designed 

to produce an optimized combination, not available in nature, of two or more responses 

to specific excitation.” The dimensions of these cells are usually much smaller than the 

operating wavelength. In this case, the medium can be considered homogeneous, and it is 

feasible to define effective (macroscopic) constitutive parameters. 

Negative permittivity and permeability cause electromagnetic waves travelling 

through the medium to exhibit unusual characteristics. Moreover, due to the negative 

index of refraction, the phase fronts and the group velocity (power flow) of an 

electromagnetic wave are in opposite directions and have a left-hand sense. Therefore, 

they are referred to as left-handed (LH) materials. These properties may be used in many 

applications, such as novel shapes and sizes for antennas and lenses as well as 

constraining or expanding their bandwidth. 
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In this thesis, an analysis of the basic parameters of MTMs is presented along with 

their unusual characteristics and the differences from “normal” materials. One potential 

application is radar cross section (RCS) reduction. MTMs used in radar absorbing 

material (RAM) layers may have some advantage over conventional material. We analyze 

the matched surface impedance RAM and zero specular reflection absorbers. The 

equations related to specular absorbers are analyzed from a MTMs approach. Numerical 

methods for solving the transcendental equations and presentation of the results in the 

form of a universal design chart for MTMs are given. In particular, the effects of electric 

and magnetic losses are considered. In addition, some MTM configurations are simulated 

using the numerical simulation computer program Microwave Studio (MWS) by 

Computer Simulation Technology (CST). The data are generated in preparation for 

assisting in the validation of a new finite-difference time-domain (FDTD) code that will 

be capable of analyzing nonlinear effects in MTMs.  

B. LITERATURE REVIEW 

MTMs are a class of effectively homogeneous, artificial materials not found in 

nature. In [3], Veselago demonstrated that a DNG medium results in unusual optical 

phenomena when light passed through it. One property was that the phase front 

propagated in the opposite direction than in a normal medium (so-called right-hand 

media). Thus, DNG materials are also called left-handed media. 

In [4], Pendry proposed a MTM based on the split-ring resonator (SRR), which is 

a subwavelength structure consisting of two planar concentric rings facing in opposite 

directions. SRRs were first demonstrated at gigahertz frequencies by Smith [5] and 

Shelby [6]. The SRR were combined with copper wires embedded in a fiber glass circuit 

board. Conductive copper provided the negative electric permittivity, while the SRR itself 

increased the magnetic response of the material. An example is shown in Figure 1. In this 

example the SRRs are conducting squares. 
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Figure 1.   A negative index MTM formed by SRRs and wires deposited on opposite 
sides of a standard circuit board (From [7]). 

In [8], a group at MIT proposed a method to use photonic crystals to produce 

negative refraction while at the same time maintaining a positive group velocity and a 

positive refractive index. In [9], a research group lead by Anthony Hoffman produced the 

first semi-conductor-based MTM exhibiting negative refraction at optical frequencies. 

Since the 1990s, a vast amount of research has been conducted on MTMs and their 

applications. Numerous conferences and books have been devoted to the topic [2], [3], 

[4], [6]. 

C. THESIS OBJECTIVE 

The objective of this thesis is to consider the performance characteristics of lossy 

MTMs and how they might be used in a matched surface RAM technique. Universal 

design charts based on the MTMs are presented. Numerical simulations are used to study 

the properties of lossy MTMs and examine whether they could be used to advantage as a 

RAM. A universal chart for DNG materials is constructed, and its relationship for the 

chart for DPS materials is noted. 
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MWS is used to model the materials and calculate the -S parameters for 

comparison purposes. The andε µ  extraction calculation is done with a MATLAB 

program. To validate the program, test cases are presented and simulation results are 

compared to published data. 

D. THESIS OUTLINE 

The thesis is organized as follows. The topic was introduced and the importance of 

the research outlined in Chapter I. The necessary background is developed in order to 

understand the interaction of waves with MTMs in Chapter II. In Chapter III, the analysis 

of matched wave impedance RAM and zero specular reflection absorbers are discussed. 

The equations relating to specular absorbers are extended to MTMs numerical methods 

for solving the resulting transcendental equations, and presentation of the results in the 

form of a universal design chart for MTMs are given. In Chapter IV, the free space 

environment retrieval method is discussed. The simulation setup using MWS for the free 

space environment is presented. The results extracted from the S-parameters are compared 

with published data. Finally, in Chapter V, the results, conclusions and suggestions for 

future studies are discussed. 
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II. METAMATERIALS 

The basic background theory for the behavior of waves in DNG materials is 

provided in this chapter in order to understand the analysis presented in later chapters. 

A. INTRODUCTION 

MTMs are broadly defined as artificial, effectively homogeneous materials 

possessing unusual electromagnetic properties not found in nature [10]. The history of 

MTMs can be tracked back to 1968 when Russian physicist Victor Veselago published his 

now-famous paper [3] and posed the question “What would happen if a material had both 

negative permittivity and permeability?” His most striking conclusion was that a negative 

sign must be chosen for the index of refraction of a DNG material [2]. In other words, for 

a lossless medium 

  (2.1) 
where  and  are positive. 

This observation lead Veselago to design specific MTMs, and he demonstrated an 

unusual optical phenomena when light passes through them. That is, the wave front 

propagates in a direction opposite the power flow. Victor Veselago’s prediction was 

verified after more than 30 years, when John Pendry (Imperial College, London) showed 

how these materials could be created artificially [4], [11], [12]. Then, in the following 

year, he published a paper in which he proposed that MTMs be used to make a perfect 

lens [12]. In the same year (2000), a University of California San Diego group 

demonstrated the first left-handed material [13], [14]. This group started a field of 

structured materials to create electromagnetic response not available in naturally 

occurring materials [15]. Their material made use of an array of conducting, 

nonmagmetic, ring-shaped local resonator elements and an array of conducting 

continuous wires, shown in Figure 1 of Chapter I, in order to achieve negative 

permeability and permittivity. 

n µε= −
µ ε
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B. NEGATIVE PERMITTIVITY AND PERMEABILITY 

In a source free and lossy medium, Maxwell’s equations in phasor form for a j te ω  

time convention are: 

 E j Hωµ∇× = −
 

 (2.2) 
 H j Eωε∇× =

 

 (2.3) 
 0E∇× =



 (2.4) 
 0H∇× =



 (2.5) 

where  E


 (V/m) and H


(A/m) are the electric and magnetic field intensities. The factors 

ε  and µ  are often expressed in terms of the complex relative permittivity rε  and the 

complex relative permeability rµ  of the material as 

 0 ( )o r r rjε ε ε ε ε ε ′′′= = −  (2.6) 

 0 ( )o r r rjµ µ µ µ µ µ ′′′= = −  (2.7) 

where 128.854 10οε
−= × F/m and 74 10oµ π −= × H/m are the permittivity and permeability 

of free space, respectively. The imaginary parts rε ′′  and rµ′′  are due to the losses from 

electric and magnetic damping and finite conductivity. Note that rε ′′  and rµ′′  must be 

positive in a passive medium due to the conservation of energy [7]. 

Generally, materials are categorized with regard to their constitutive parameters 

,σ  µ  and ε . The ohmic losses due to finite conductivity σ  and polarization due to rε ′′  

can be lumped together [6]. In our representation, σ  is combined with rε ′′ .  

Materials can be further classified as linear or nonlinear, conducting or 

nonconducting, dispersive or nondispersive, homogeneous or inhomogeneous and 

isotropic, anisotropic or bianisotropic. The generalized representation of matrix 

constitutive relations that covers all these cases is the Tellegen representation. The fields 

are related to the flux densities by: 
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D E

B H

ε ξ
ζ µ

    
=    
       

 

 

 (2.8)

  

where in the Cartesian system the vectors and matrices, respectively, have the forms: 

 
x

y

z

D
D D

D

 
 =  
  



 (2.9) 

 

 
xx xy xz

yx yy yz

zx zy zz

ε ε ε
ε ε ε ε

ε ε ε

 
 

=  
 
 

 (2.10) 

 

and  
xx xy xz

yx yy yz

zx zy zz

µ µ µ
µ µ µ µ

µ µ µ

 
 

=  
 
 

 (2.11) 

where the elements ijε and ijµ  ( ,i j = x , y  or z ) are the complex relative values that 

completely describe the permittivity and permeability of the material, respectively [16]. 

The off-diagonal blocks of the matrix in Equation (2.8) are zero for the material of 

interest in this study. 

Lossless materials where 0rε ′ >  and 0rµ′ >  are referred to as DPS or RH 

materials because the direction of power flow given by the Poynting vector W


 is, 

according to right-handed rule, 

 ,W E H= ×
  

 (2.12) 

and the propagation vector k


 is in the direction of W


 

 

0 r rk kκ ε µ′ ′=


 (2.13) 

where 2
o o o

o

πκ ω µ ε
λ

= = , oλ  is the free space wavelength and 2 fω π=  is the radian 

frequency. 
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Now, let us examine the case where both  rε ′  and rµ ′  are negative. This case is 

referred to as a DNG material. Then, the direction of propagation for this kind of material 

is 

  

0 .r r ok k k nκ ε µ κ′ ′= =


 (2.14) 

The wave impedance can be described as [17]:            

 .r
o

r

µ
η η

ε

′
=

′
 (2.15) 

The different combinations of real permeability and permittivity with multiplying 

coefficients are listed in Table 1. 

 

Table 1.   Multiplicative factor for index of refraction n  (After [17]). 

n  0rε >  0rε <  

0rµ >  
+ 1 j  

0rµ <  j  -1 

 

A result of Equation (2.14) is that, for a DNG material, the negative sign flips the 

angle of refraction in Snell’s law, so Snell’s law must be amended to 

 

 2 2 2

1 1 1

sin
sin

i r r

t r r

p
p

θ µ ε
θ µ ε

′ ′
=

′ ′
 (2.16) 

where p is the “handedness” parameter of a medium given by the determinant 
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 

    

    

x e y e z e

p x h y h z h

x k y k z k

 • • •
 
 = • • •
 
 • • • 

   





 (2.17) 

 where /e E E=
  

 and  /h H H=
 

 are unit vectors in the directions of the fields [19]. 

Based on the equation for the right-handed  and left-handed materials, we note the 

following properties [2] : 

1. The field vectors and the direction of phase propagation in DNG material form 

a left-handed triplet, whereas, in an ordinary medium they are right-handed. 

2. The angle of refraction between a DPS medium and a DNG medium are 

negative. 

3. Evanescent waves increase as they propagate through a DNG medium rather 

than decrease as they do in an ordinary medium. 

4. The phase advances in a DNG medium even if lossless and is not retarded as 

in an ordinary medium. 

These properties are discussed further in the following subsections. 

1. Left-Hand Rule 

All natural materials follow a right-hand rule due to their positive values of 

relative permeability and permittivity. However, the DNG materials follow the left-hand 

rule [18], [19].  According to this rule, the flow of energy (Poynting vector), given by 

 ,W E H= ×
  

 (2.18) 
 
is in the opposite direction of the wave front propagation. 
 

2. Negative Index of Refraction 

Snell’s Law determines the relationship between the angles of incidence and 

refraction at an interface between two lossless media ( r rε ε ′=  and r rµ µ′= ) with different 

indices of refraction 
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 1 1 2 2sin sin .n nθ θ=  (2.19)
  

Thus, the refraction angle 2θ  in Figure 2, would, according to Snell’s law, have the same 

sign as the angle of incidence 1θ  when 1 0n > . In negative-index materials, the index of 

refraction is negative and, as a result, the refracted wave remains on the same side of the 

normal as the incident wave. Furthermore, the tangential components of the fields in two 

media must be equal at the interface regardless of the sign of ε  and µ  in the two media. 

The equations for the tangential components are 

 

 1 2 1 2and .E E H H= =
   

 (2.20) 
 
Moreover, the boundary conditions for the normal components imply 
 
 
 1 1 2 2 1 1 2 2andE E H Hε ε µ µ⊥ ⊥ ⊥ ⊥= =  (2.21) 

 and .k E H k H E
c c
ω ωµ ε× = × = −

     

 (2.22) 

 

Thus, if 1ε , 1µ  and  2ε , 2µ  have the same signs, the direction of propagation k


 in 

medium 2 is as indicated at the top in Figure 2 for 0n > . However, if 2ε , 2µ  has the sign 

opposite of 1ε , 1µ , the normal components of E


 and H


 are the opposite of each other 

according to (2.21), which means that the phase velocity in medium 2 is left-handed [2], 

as indicated in the bottom of Figure 2. 
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Figure 2.   Refraction between a DPS medium 1 and region 2 DPS   (top) and DNG 
(bottom) (After [2]). 

The normal component of the electric field changes its direction and so does the 

normal component of the wave vector. Therefore, the index of refraction must be negative 

 2 2and .n n
c
ωκ ε µ= = −  (2.23) 

 

With the change of the sign of the refractive index, Snell’s law of refraction is modified to 

[20] 

 2 21 2

2 11 1

sin( )
sin( )

n
n

ε µθ
θ ε µ

−
= = −  (2.24) 

 

which is in agreement with Equation (2.16). 

3. Evanescent Waves  

In Equation (2.1), when 0ε <  and 0µ < , then the index of refraction n  is an 

imaginary number. Due to the fact that n is imaginary, the propagating waves change into 

evanescent waves [2]. While in a RH medium, the evanescent waves decay exponentially, 

in LH materials this decay is canceled [5]. Veselago showed that the evanescent waves 

propagating through this type of medium increase as they move away from their origin [3] 
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and emerge from the far side of the medium enhanced in amplitude by the transmission 

process [5]. This does not violate energy conservation because evanescent waves do not 

carry energy. 

4. Phase Advance 

If a lossless dielectric slab is placed in front of a ground plane, the input 

impedance inZ  for an ordinary material with 0n >  is obtained by a phase delay

2 2 .od ndκ κ=  Similarly, if 0n <  there is a phase advance of 2 dκ . This motion in both 

cases has, as a result, a phase delay when 0n >  and a phase advance when 0n <  [18, 

19]. This property of DNG materials has been used to build electromagnetic “cloaks” that 

guide waves around objects as shown in Figure 3. 

 

Figure 3.   Electromagnetic “Cloak” based on the phase advance property of a DNG 
(From [20]). 

C. REALIZATION OF DNG MATERIALS 

Artificial materials are media made of inclusions such that the sizes and spacing of 

the inclusions are much smaller than the wavelength of incident electromagnetic 

radiation. This allows a medium to act as an effective bulk medium to electromagnetic 

waves. Artificial materials can be tailored to produce desired values of the permittivity 
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and permeability, and have a negative index of refraction at specific frequencies. The 

applications of this tailoring include electromagnetic cloaking and, theoretically, 

subwavelength image resolution. They have also been used to improve the performance of 

antennas and transmission line devices. However, the success of these applications 

depends on their sensitivity to energy loss. 

Artificial materials are a mix of regular materials combined in such a way as to 

obtain specific and unusual characteristics. For example, negative rε ′  can be obtained 

using a grid of conducting wires as shown in Figure 4. 

 

Figure 4.   Three-dimensional grid of thin wires approximates a plasma (From [21]). 

The effective relative dielectric constant is 
 

 
2

2 2

2

1 p
reff

o pj a
r

ω
ε

ε ω
ω ω

πσ

= −
 

+  
 

 (2.25) 

where 
2

2

2
ln( / )p a a r
πσω = , r  is the radius of the wire, a  is the grid spacing and σ  is the 

wire conductivity [22]. 

A structure that influences both the effective permittivity and permeability is the 

coplanar ring (CPR). This configuration is shown in Figure 5. 
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Figure 5.   Coplanar ring (After [21]). 

According to the Lentz’s law, the induced currents oppose the external field and 

the electric field causes charge separation. Thus, the first effect is a diamagnetic behavior, 

and the second results in a polarization vector and changing the permittivity. The effective 

permeability of CPR is given by  

 

 
2 2

2 2 3

/1 2 31
reff

o o

r a
l lj
r Cr

πµ ρ
ω µ π ω µ

= −
+ −

 (2.26) 

where ρ  is the resistivity of the metal (ohms/m), 2lno cC
d

ε
π

 =  
 

 is the capacitance per 

meter of two parallel strips, a  the lattice spacing in the plane of rings and l  is the spacing 

between sheets of rings [13], [16]. 

D. CLASSIFICATION OF  MATERIALS 

First, we consider lossless materials, where 0r rε µ′′ ′′= = . All lossless materials are 

classified into four types depending on the signs of rε ′  and rµ′ , as can be seen in Figure 6. 

Also labeled in the figure is the plane wave propagation sense: (1) right-handed, RH, or 

(2) left-handed, LH and (3) evanescent.  
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Figure 6.   Depiction of -ε µ space for lossless metamaterials (After [10]). 

Materials in which 0rε ′ >  and 0rµ′ >  are called double-positive (DPS). In DPS 

materials the vectors of the electric field,  magnetic field, and phase velocity vector form a 

right-handed triad. Materials in which 0rε ′ <  and 0rµ′ >  are called epsilon-negative 

(ENG). Periodic wire structures can possess this property [10]. Materials in which 0rε ′ >

and 0rµ′ <  are called mu-negative (MNG). Periodic split-ring resonator (SRR) structures 

possess this property [11]. In both ENG and MNG materials, the propagation constant is 

purely real. Therefore, electromagnetic waves become evanescent modes and cannot 

propagate.  

In single-negative (SNG) material, which includes ENG and MNG materials, the 

vectors of the electric field, magnetic field, and phase velocity vector form a LH triad, so 

DNG materials are also called LH media. DNG materials have been artificially realized 

by combining the periodic wire and SRR structures. The index of refraction is negative, 

so DNG materials are also called negative refractive index (NRI) materials.  

Artificially engineered MTMs are always dispersive and lossy because they are 

resonant structures. Therefore, the classification in Figure 6 is not valid for lossy 

materials. 
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At this point, general propagation constant γ  is defined for lossy ENG, MNG, and 

DNG materials. Theoretically, it can been seen how γ  is affected by the material 

constants and by the loss terms of ε  and µ . For any material, the propagation constant 

can be defined as 

 
 ( )r r o r r r r r r r rj j j jγ α β ω ε µ κ ε µ ε µ ε µ ε µ′ ′ ′′ ′′ ′ ′′ ′′ ′= + = ± = ± − − +  (2.27) 
 

where α  and β  are the attenuation and phase constants, respectively [10]. Note that the 

±  sign should be added because β  can be either positive or negative. Thus, only the 

solution that gives a positive α  is a real solution because α  must be positive due to the 

conservation of energy. Therefore, the correct sign of β  is that which is paired with the 

positive α . 

To simplify Equation (2.27), new parameters that were introduced in [10] are used 

 

 r r r rA ε µ ε µ′ ′ ′′ ′′= −  (2.28) 
 .r r r rB ε µ ε µ′ ′′ ′′ ′= +  (2.29) 

A general plot in A - B space is shown in Figure 7. Now we analyze the properties in each 

region. Much of this discussion is taken from [10].  

 

Figure 7.   -A B  space for lossy metamaterials (After [10]). 
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Applying Equations (2.28) and (2.29) to Equation (2.27), we get explicit forms of 

α  and β . Thus, for 0A ≥ , we get 

 

 ( )1/42 2 11sin tan ,
2o

BA B
A

α κ −  = ± +     
 (2.30) 

 ( )1/42 2 11cos tan .
2o

BA B
A

β κ −  = ± +     
 (2.31) 

   
For 0A < , we get 

 ( )1/42 2 11cos tan ,
2o

BA B
A

α κ −
  

= ± +       
 (2.32) 

 ( )1/42 2 11sin tan .
2o

BA B
A

β κ −
  

= ± +       
 (2.33) 

   
 

When , 0r rε µ′ ′ > , 0r rε µ′′ ′′= =  (lossless DPS: 0A > , 0B = ), 0α =  and o r rβ κ ε µ′ ′= + . 

When 0rε ′ < , 0rµ′ < , 0r rε µ′′ ′′= =  (lossless DNG: 0A > , 0B = ), 0α =  and 

o r rβ κ ε µ′ ′= − . In these cases, 0α = , so the sign of β  can be determined using by 

consideration of the plane wave propagation in these media [23]. For lossless DPS 

materials, β  is positive, and for lossless DNG materials, β  is negative. 

For DPS with losses, α  and β  are expressed by Equations (2.30) and (2.31), 

respectively, and for DNG with losses, by Equations (2.32) and (2.33), respectively. Note 

that B  for DNG materials is always negative, so that the signs of α  and β  are opposite. 

Thus, negative β  paired with a positive α  is the correct solution for DNG materials. This 

result confirms that a DNG material operates as an LH triad. 

For ENG and MNG without material losses ( 0A < , 0B = ), o r rα κ ε µ′ ′=  and 

0β = . The waves in these materials become evanescent and cannot propagate. 

For ENG with electrical losses ( 0rε ′ > , 0rµ′ > , 0rε ′′ ≠ , 0rµ′′ = ) , A  and B  

become 0r rε µ′ ′ <  and 0r rε µ′′ ′ > , respectively, and the sign of /B A  is positive. Thus, 
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 ( )1/42 2 11cos tan ,
2

r
o

r

A B εα κ
ε

−
  ′′

= + +     ′  
 (2.34) 

  

 ( )1/42 2 11sin tan .
2

r
o

r

A B εβ κ
ε

−
  ′′

= + +     ′  
 (2.35) 

   
 

For this material, 0β > , which is different from the evanescent case when 0β = . The 

wave in this material attenuates exponentially, and β  is positive in the wave propagation 

region. Therefore, this material can be defined as an RH medium. 

For ENG with magnetic losses ( 0rε ′ < , 0rµ′ > , 0rε ′′ = , 0rµ′′ ≠ ), A  becomes 

0r rε µ′ ′ <  and B  becomes 0r rε µ′ ′′ > , so the sign of /B A  is negative. Thus, the signs of 

α  and β  are opposite: 

 ( )1/42 2 11cos tan ,
2

r
o

r

A B µα κ
µ

−
  ′′

= + +     ′  
 (2.36) 

  
  
  

 ( )1/42 2 11sin tan .
2

r
o

r

A µβ κ
µ

−
  ′′

= − +Β     ′  
 (2.37) 

  
   

The sign of β  is negative, so this material is an LH medium. Large attenuation occurs 

because of the large α as in Equation (2.36). Thus, an ENG material can be either an RH 

or LH medium depending on the losses of the material. 

MNG materials with magnetic losses ( 0rε ′ > , 0rµ′ < , 0rε ′′ = , 0rµ′′ ≠ ) have α  and 

β  as expressed by Equations (2.34) and (2.35), respectively. Thus, these materials are RH 

media. On the other hand, MNG materials with electric loss ( 0rε ′ > , 0rµ′ < , 0rε ′ ≠ , 0rµ′′ =

) have α  and β  as expressed by Equations (2.36) and (2.37), respectively. Thus, these 

materials are LH media. 
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For SNG materials, α  and β  follow sine and cosine functions, respectively, so 

only α  exists when 0B =  or 0r rε µ′′ ′′= = , and the values of α  and β  are similar. 

Based on this background, we can classify DPS, ENG and SNG materials with the 

triads of RH and LH by using the axis of A  and B  represented in Figure 7. In Figure 7, 

when 0B < , both the propagation constant and the refractive index are negative, and 

when 0B >  the propagation constant and the refractive index are both positive. A  is 

negative in SNG materials but can be positive or negative in DPS and ENG materials.  

E. SUMMARY 

In this chapter, a brief introduction of metamaterials is given, and their unusual 

characteristics were discussed. Finally, a classification of lossy materials depending on 

the signs of rε ′  and rµ′  is defined in terms of two parameters A  and B . We classified the 

different types of metamaterials (DPS, ENG, SNG, DNG) with the triads of RH and LH. 

In the next chapter these materials are applied to RAM layers. 
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III. DESIGN FOR ZERO SPECULAR REFLECTION 

A. INTRODUCTION 

In this chapter, the analysis of zero specular reflection absorbers is presented. The 

equations related to specular absorbers are analyzed based on the transmission line theory. 

Numerical solutions of the equations are used to generate the universal design charts for 

zero specular reflection layers. Finally, a solution of the transcendental equation for a 

matched RAM layer over a PEC backing is programmed in MATLAB 7.4 and curves on 

the universal chart is given for both DPS and DNG layers. 

B. EQUATIONS FOR ZERO SPECULAR REFLECTION 

Two different conceptual approaches have been applied in the specular reflection 

reduction application as presented in [24], [25]. The first is the matched-characteristic 

impedance concept, in which the intrinsic impedance of the material is made equal to the 

intrinsic impedance of free space. This entails making the relative dielectric constant and 

relative magnetic permeability of the material equal to each other so there is no front 

surface reflection from the material. The incident wave is attenuated to a very low 

amplitude by the round-trip path in an absorption layer that is thick. A layer of such 

medium placed in front of a conducting plate, the other side of the layer forming a plane 

interface with free space and illuminated by normally incident plane wave, is shown in 

Figure8 .

 

Figure 8.   Specular reflection from a coated material and an equivalent transmission 
line  circuit (From [25]). 
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The second concept is a matched wave impedance approach. The wave impedance 

is the ratio of total E


 to total H


. The wave impedance at the front surface of the reflector 

backed material layer is made equal to the intrinsic impedance of free space, thus 

producing no reflection at all. This approach forms the basis of the studies in this thesis. 

Referring to Figure 8, we see the six design parameters of wavelength λ , layer thickness 

t , the real part of the permittivity rε ′ , the imaginary part of the permittivity rε ′′ , the real 

part of the permeability rµ′ , and the imaginary part of the permeability rµ′′ . 

A normally incident plane wave having electric field iE


and magnetic field iH


 

illuminates the structure. A reflected plane wave having electric field rE


 and rH


 results. 

The electromagnetic field within the absorber layer consists of the sum of forward and 

backward traveling waves. The wave impedance at any plane parallel to the interface is 

defined by 

 
tan

tan

E
Z

H
=



  (2.38)

  

where tanE


 is the tangential electric field component and tanH


 is the tangential magnetic 

field component. For normal incidence the electric and magnetic field vectors are 

completely tangential. 

The ratio of the reflected wave amplitude to the incident wave amplitude is the 

reflection coefficient (Γ ) defined by 

 

 rs

is

E
E

Γ =  (2.39) 

where the subscript s  refers to evaluation at the layer’s outer surface. Another more 

common expression for the reflection coefficient is 

 
/ 1
/ 1

in o in o

in o in o

Z Z Z Z
Z Z Z Z

− −
Γ = =

+ +
 (2.40)
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where /o o oZ µ ε=  [25]. It can been seen from Equation (3.3) that if /in oZ Z  is equal to 

one, then the reflection coefficient is zero. The impedance at the front surface of the 

reflector backed material layer is made equal to the intrinsic impedance of free space, thus 

producing no reflection. 

In our case, based on Figure 8, the transmission line equation can be applied for a 

normally incident wave, so inZ  can be defined by 

 

 ( )
( )

tan
tan

L d
in d

d L

Z jZ t
Z Z

Z jZ t
γ
γ

+
=

+
 (2.41) 

where LZ  represents the load presented by the backing material (platform material) and 

dZ represents the impedance of the coating layer, where 

 ( )
( )

.o r r r
d o

o r r r r

j jZ Z
j j

µ µ µ µ µ
ε ε ε ε ε

′ ′′− ′ ′′−
= =

′ ′′ ′ ′′− −
 (2.42) 

Note that the propagation constant is complex in this representation 

 

 ( )( ).o r o r o r r r rj j j j jγ ω µε ω µ µ ε ε κ µ µ ε ε′′ ′′′ ′= = = − −  (2.43) 

  
If we normalize each term of  Equation (3.3) by oZ , then /in oZ Z  equal to one is the 
condition for no reflection for a given LZ .  

C. MATCHING LAYER FOR  PEC BACKING 

The first step is to find layers that produce zero specular reflection when the 

background material is set to be PEC ( 0LZ = ). Thus, Equation (3.4) is simplified to 

 
 ( )tan .in dZ jZ tγ=  (2.44) 

Using the condition for zero specular reflection, we get 

 
 tan( ).o dZ jZ tγ=  (2.45) 
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Substituting for the constitutive parameters of the medium, we get the 

transcendental equation  

 ( ) ( )( )tan 2 1.r r
r r r r

r r

j tj j j
j

µ µ π µ µ ε ελε ε
′ ′′−  ′ ′′ ′ ′′− − = ′ ′′−

 (2.46) 

 

In order to simplify Equation (3.9), the numerator and denominator of the first part of the 

equation are multiplied by /t λ and rewritten as  

  

 
( )( )
( )( ) ( ) ( )( )tan 2 1.

r r

r r

r r

tj
tj j j

tj

µ µ λ π µ µ ε ελε ε λ

′ ′′−
 ′ ′′ ′ ′′− − = ′ ′′−

 (2.47) 

 

For convenience a new set of variables can be defined 

 ( ) ( )Re[ ]r r
t tx µ µλ λ ′= =  (2.48) 

 ( ) ( )Im[ ]r r
t ty µ µλ λ ′′= =  (2.49) 

 ( ) ( )Re[ ]r r
t ta ε ελ λ ′= =  (2.50) 

 ( ) ( )Im[ ] .r r
t tb ε ελ λ ′′= =  (2.51) 

  

Equation (3.10) can be rewritten as  

 

 ( )
( ) ( )tan 2 ( ) 1.
x jy

j x jy a jb
a jb

π
−  − − = −

 (2.52) 

The universal chart that depends on six independent parameters that are combined 

into the four parameter groups in Equations (3.11), (3.12), (3.13) and (3.14) is shown in 

Figure 9. The last parameter is the dialectic loss tangent tan ,εδ which is given by 

 
 tan .b

aεδ =  (2.53) 

  
 

As described in [24], the chart represents combinations of the four parameter groups that 

result in a zero-reflection absorber with the exception of the lower left region, which is 
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bounded by tan 0εδ = . The values of ( )/ Re[ ]ra t λ ε=  are read by interpolation between 

bounding contours of constant values of ( )/ Im[ ]rb t λ ε=  (red lines). The values of tan εδ

are read by interpolation between bounding contours of constant values of tan εδ  (blue 

lines). Then it is possible to find the sets of ( )/ Re[ ]rx t λ µ=  and ( )/ Im[ ],ry t λ µ=  the 

values of which are read from the abscissa and ordinate scales, respectively.  

 

Figure 9.   Universal curves for zero specular reflection (From [24]). 

As discussed in [24], there are three distinctly different parameter regimes 

depicted on the chart. The single curve (actually many overlapping curves) at the left side 

represents thin (less than “quarter-electrical-wavelength” thick) absorbers. Going to the 

left on this curve requires values of dielectric constant that are less than unity, which is 

not physically realistic. The region across the top of the chart above the coalesced curve 

represents the matched characteristic-impedance absorbers. Although, the chart displays 

contours only for values up to 10, in fact, the entire region progressing from right to left  
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can be filled with a sequence of similar curves of progressively higher tan εδ values. The 

lower right region of the chart is the location of resonant quarter-electrical-wavelength-

thick absorbers [26]. 

In the region where the dielectric loss tangent is less than 0.3 and 

Im[ ] 3Re[ ],r rµ µ≥  the parameters are approximated by 

 ( )2 Im[ ] 1,r
tπ µλ =  (2.54) 

 Re[ ] 3Re[ ].r rε µ=  (2.55) 
 

The required layer thickness in terms of the wavelength and only the imaginary part of the 

magnetic permeability at that wavelength is determined by Equation (3.17). The 

relationship between real parts of magnetic permeability and dielectric constant is shown 

by Equation (3.18). In order to have the reflection close to zero, this equation must be 

satisfied. The required thickness is also dependent on this equation. 

In the upper part of the chart, where ( )/ Im[ ] 1rt λ µ ≥ , the relationship can be 

defined as 

 Re[ ] Re[ ]r rε µ=  (2.56) 
 tan tanε µδ δ=  (2.57) 

 
where magnetic loss tangent equals to 
  

 Im[ ]tan .
Re[ ]

r

r
µ

µδ
µ

=  (2.58) 

 

Equations (3.19) and (3.20) are equivalent to the statement (complex) that ε µ=

(real and imaginary part), which is the definition of a matched-characteristic impedance 

absorber. The intrinsic impedance of the material is equal to the intrinsic impedance of 

free space. Thus, for all practical purposes, a matched-characteristic impedance absorber 

is equivalent to a zero reflection absorber when ( )/ Im[ ] 1rt λ µ ≥ . 

The lower right region of the chart exhibits a complicated relationship between the 

parameter groups that constitute a zero-reflection absorber. This region includes the 
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quarter electrical wavelength thick absorber. The lower part of the chart consists of two 

subregions. In the left subregion, between tan 0εδ =  and tan 0.8εδ =  contours, the 

thickness of the layer is approximately one-quarter electrical wavelength [24]. It can be 

expressed as 

 ( ) ( )1/24 Re 1r r
t µ ελ

  ≅  . (2.59) 

 

Equation (3.22) is most accurate near the tan 0εδ =  contour. Near the bottom of the chart, 

where dielectric loss dominates, the relationship is ( ) ( )Im 1r
tπ ελ ≅ . 

D. MATCHING LAYERS FOR DPS AND DNG MATERIALS 

1. DPS Layers 

From Equation (3.15) for a DPS material, x  and a  are positive; and y  and b are 

zero for a lossless medium and positive for a lossy medium. A sample curve is shown in 

the form of plot x  versus y  in the upper left of Figure 10 for fixed values of a  and b . 

This is only one of the many curves that comprise the universal chart in Figure 9. The 

solution to Equation (3.15) is 

 1 2z z jz x jy= + = −  (2.60) 
 

which is shown in the upper right of Figure 10. The loss tangent is given in Equation 

(3.16). The curves were generated using Matlab’s fsolve function. 

The argument in Equation (3.12) is /t jγ  as we can notice from rewriting 

Equation (3.15) we get  

 ( )
/

tan 2 ( )( ) 1.

t j

x jyj a jb x jy
a jb

γ

π−
± − − =

−


 (2.61) 

A valid solution for a passive DPS (right-handed) material must have , 0a β ≥ . This is 

satisfied by selecting the (+) sign in the tangent. A plot of α  and β  for this case is shown 

in the lower left of Figure 10. 
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A plot of the solutions in -A B  space [10] is shown in the lower right of Figure 10. 

The parameters A  and B  are given in Equations (2.27) and (2.28), respectively. The 

properties of materials can be classified in terms of these two parameters, with the regions 

labeled in Figure 7 of Chapter II, Section D. For the example in Figure 10, an -A B  plot is 

shown in the lower right.  

 

Figure 10.   Sample curve solutions for zero specular reflection, DPS materials with 
tanδ = 2. 

2. DNG Layers 

For a DNG material, the real parts of the permittivity and permeability are 

negative. Therefore, rewriting Equation (3.15) with the negative signs explicitly included, 

we have 

 ( )tan 2 ( )( ) 1x jyj a jb x jy
a jb

π− −
± − − − − =

− −
 (2.62) 
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whereas before x , y ,  a  and b  are all positive. For a DNG (left-handed) material 0α ≥  

and 0β < . This is satisfied by selecting the (− ) sign in the tangent. Figure 11 is a plot of 

solutions of Equation (3.25) for tanδ =2. Note that β  is negative as it should be for a 

DNG material and, in this case, solution points fall in the lower left of A B−  space. 

 

Figure 11.   Sample curve solutions for zero specular reflection, DNG materials with 
tanδ =2. 

E. COMPARISON OF DPS AND DNG LAYERS 

In this section, a relationship between DPS and DNG solutions of the 

transcendental equation is presented in order to recognize the symmetry between Figures 

10 and 11.  
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1. DPS Case 

In this case, let the normalized complex permittivity parameter be denoted as

v a jb≡ −  and the corresponding solution to Equation (3.25) as z x jy≡ − . In terms of 

these two quantities, Equation (3.25) can be redefined as  

 ( )tan 2 1.zj zv
v

π =  (2.63) 

Using the polar form for the quantities , , andz z v v∗ ∗  ( where * denotes complex 

conjugate), we get  

  
  
 ( )1, *  where tan / ,z zj j

zz z e z z e y xφ φ φ− −= − = =  (2.64) 
and 
 ( )1, *  where tan / .v vj j

vv v e v v e b aφ φ φ− −= − = =  (2.65) 
 
A plot in the complex plane of the quantities z  and isshown in Figure12.z∗  A similar 

relationship holds for v  and v∗ . 
 

 

Figure 12.   Illustration of the polar form complex parameters , and .z z z∗ ∗−  

The product of  the square roots of z  and v  is  
 

 /2 ( )/2/2 .v z vz j jjz v z v e e z v eφ φ φφ − − +−= =  (2.66) 
 
So, the solution for a DPS material is 
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 ( )
( )

2
2 2 cos sin

2 sin cos

j
j j vz

j v z e j v z j

v z j

α β π
π π

π

− Φ
+ = ±

= ± = ± Φ − Φ

= ± Φ + Φ

 (2.67) 

 
where ( ) / 2z vφ φΦ ≡ +  and 0 / 2π≤ Φ ≤ . We select in the DPS case the (+) sign so that 
α  and β  are positive. 

2. DNG Case   

Working in the same way as the DPS case, we consider the same value of a and b

, namely *a jb v− − ≡ − , where * denotes complex conjugation. Let solutions of Equation 

(3.25) for a fixed value *v−  be denoted as * ( )z x jy− = − − . Equation (3.25) can be 

rewritten as  

 ( ) ( ) ( ) ( )
* *

* ** tan 2 ( *)( *) tan 2 tan 2 1.
*

z z zj v z j vz j vz
v v v

π π π−  − − − = − = − = −
 

  (2.68) 
 

Using the polar form for the quantities  *z−  and *,v−  we get for the product and the 

quotient of the square roots that 

 
 ( )( ) ( )/2 ( )/2( )/2 ** * v z vz j jjz v z v e e z v e z vφ π φ φφ π + ++− − = = − =  (2.69) 
and 
  

 
*

( )/2 ( )/2( )/2* .
*

v z vz j jjz zz ze e e
v v v v

φ π φ φφ π − + − −+−
= = =

−
 (2.70) 

 
The propagation constant for a DNG material is 

 
( )

*
2
2 2 cos sin .j

j j vz
j v z e j v z j

α β π
π πΦ

+ = ±
= ± = ± Φ + Φ

 (2.71) 

In this case, we select the (− ) sign so that the real part is positive and the imaginary part 

negative: 

 ( )2 cos sin .j v z jα β π+ = − Φ + Φ  (2.72) 
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3. Relationship between DPS and DNG Materials 

A comparison between Equations (3.26) and (3.31) shows that the DNG equation 

is the complex conjugate of the DPS equation. We note that when z  and *z  are solutions 

to Equations (3.24) and (3.25), respectively, both Equations (3.26) and (3.31) are real; the 

imaginary parts of the left hand sides are zero. Therefore, we conclude that if z is a 

solution to the DPS equation for a given v , then *z−  will be a solution for the DNG 

equation for *v− . This results in the symmetry between the DPS and DNG cases observed 

in Figures 10 and 11. 

F. SUMMARY 

In this chapter, the main focus was on the matched wave impedance concept, in 

which the wave impedance at the front surface of the reflector backed material layer is 

made equal to the intrinsic impedance of free space to produce no reflection. 

The material configuration and electromagnetic parameter values of a single 

homogeneous layer of dielectric/magnetic material to produce zero specular reflection has 

been determined for both DPS and DNG layers. Moreover, we recognize that that the 

regions of both materials are the same with the regions of Figures 10 and 11 for -A B

space for lossless materials that were mentioned in the Chapter II. 

The equations based on this concept were solved numerically using computer 

simulations in order to plot universal design curves for zero specular reflection.  

In the following chapter, simulations of materials in the free space environment 

are used to extract the effective permittivity and permeability from scattering parameters 

obtained from data in turn obtained from simulations in MWS. 
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IV. EXTRACTING EFFECTIVE PARAMETERS 

A. INTRODUCTION 

In this chapter, measurements of materials in a free space environment are used to 

extract the effective permittivity and permeability from scattering parameters. In order to 

verify the accuracy of scattering parameters generated from simulation using MWS, 

MATLAB is used to calculate the reflection and transmission coefficients and compare 

those generated from simulation.   

B. RETRIEVAL METHOD 

The retrieval method used in the following sections is based on the approach by 

Xudong Chen et al in [27] where the -S parameters are defined in terms of the reflection 

and transmission coefficients as 

 11S R=  (4.1) 
   
 21

oj dS Te κ=  (4.2)
  
 

where oκ  denotes the wave number in free space and d  is the thickness of the material. 

The S parameters are related to refractive index n  and impedance Z  by 

 

 
( )2

01
11 22

01

1

1

o

o

j n d

j n d

R e
S

R e

κ

κ

−
=

−
 (4.3) 

 

 
( )2

01
21 22

01

1
1

o

o

jn d

j n d

R e
S

R e

κ

κ

−
=

−
 (4.4) 

 
where ( ) ( )01 1 / 1R Z Z= − + . 

The impedance Z  and the refractive index n  are  
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 ( )
( )

2 2
11 21

2 2
11 21

1
1

S S
Z

S S
+ −

= ±
− −

 (4.5) 

  
and 
 21 ,ojn de X j Xκ = ± −  (4.6) 
  

respectively, where ( ) 12 2
21 11 212 1X S S S

−
 = − +  . Since the MTM under consideration is a 

passive medium, the signs in Equations (4.5) and (4.6) are determined by the requirement 

 
 Re( ) 0Z ≥  (4.7) 
and 
 Im( ) 0.n ≥  (4.8) 
 
  

The value of refractive index n can be determined from Equation (4.6) as  

 

 ( ) ( ){ }1 Im ln 2 Re lno oj d j d

o

n e m j e
d

κ κπ
κ

      = + −        (4.9) 

 

where m  is an integer related to the branch index of the real part of n . The imaginary 

part of n  is uniquely determined, but the real part is complicated by the branches of the 

logarithm function.  

It is a common method to determine Z  and n  from Equations (4.5) and (4.6) with 

the requirement of Equations (4.7) and (4.8). However, this method may fail in practice 

when Re( )Z  and Im( )n  are close to zero. Sometimes the sign of Re( )Z  and Im( )n  

change due to small perturbations in 11S  and 21S  that is produced in experimental 

measurements or numerical simulations. In order to determine the correct sign of Z , two 

cases are distinguished. The first case is for Re( )Z δ≤ , where δ  is a positive number 

and for which Re( ) 0Z ≥ . In the second case, the sign of Z  is chosen so that the 
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corresponding n  has a non-negative imaginary part ( )Im( ) 0n ≥ , or equivalently 

1ojn de κ ≤ . The index of refraction is derived from Equations (4.3) and (4.4) to get 

 21

11

.
11
1

ojn d Se
ZS
Z

κ =
− −  + 

 (4.10) 

The method to precisely determine the branch of Re( )n can be found in [27].   

C. RETRIEVAL USING GENERATED S-PARAMETERS FROM MWS 

In this section, simulations are performed using MWS by CST, which uses the 

finite integration technique (FIT) in either the time or frequency domain in order to 

determine reflection and transmission properties of any given model. Extracting the data 

of the reflection 11S  and transmission 21S  coefficients, a calculation of the constitutive 

parameters from the impedance Z and the index of refraction n  is perfomed. The results 

of the calculation of the constitutive parameters were compared with published data. 

1. Model 1  

The model that we used in the first case is a cube with side length 2.5 mm. The 

material is given the constitutive parameters rε =5 and rµ =3. The boundary conditions 

that are used are 0and 0t tH E= =  as shown in Figure 13. These boundary conditions 

replicate an infinite slab with a plane wave normally incident at the ports as shown in 

Figure 14. 

 

Figure 13.   Boundary conditions for the cube (Model 1). 
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Figure 14.   Cube with 2.5 mm side length and rε =5 and rµ =3. 

Running the simulation in MWS, we obtain the -S parameter magnitudes 11S  and 

21S  in dB as shown in Figures 15 and 16, respectively. 

 

Figure 15.   11S  magnitude in dB versus frequency for the Cube model. 
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Figure 16.   21S  magnitude in dB versus frequency for the Cube model.  

For the same model and data, an extraction program [17] was used to retrieve the 

permeability and permittivity from the scattering parameters generated by MWS. The 

results of the extracted rµ  and rε  using MATLAB are shown in Figures 17 and 20, 

respectively. 

 

Figure 17.   Extracted real and imaginary part of the permeability of the Cube model.  
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Figure 18.   Extracted real and imaginary part of the permittivity of the Cube model. 

The results of the extracted index of refraction and impedance for Model 1 are 

shown in Figures 19 and 20, respectively. 

 

Figure 19.   Extracted real and imaginary part of the index of refraction of the Cube 
model. 
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Figure 20.   Extracted real and imaginary part of the impedance of the Cube model. 

Note that the retrieval program extracts 5and 3ε µ= =  from the simulation data. 

Thus, the retrieval program works correctly for RH materials whose constitutive 

parameters are both positive. In the following models, the process is extended to LH 

materials. 

2. Model 2 

This model is a “traditional” MTM, consisting of two split ring resonators (SRR) 

combined to form a coplanar ring (CPR) on a dielectric slab (see Figure 21). The 

dimensions of this model are the same as described in [28] and [29] and shown in Figure 

21. More specifically, the inner ring radius r  of the SRR is 1.5 mm, the ring width c is 

0.8 mm, the radial gap width between the rings d  is 0.2 mm and the dielectric thickness t  

is 0.216 mm. The dielectric slab is a square with length 5 mm and rε =3.2. 
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Figure 21.   CPR with dimensions r =1.5 mm, d  =0.2 mm, c  =0.8 mm and t =0.216 
mm. 

The objective of this simulation is to calculate the effective permeability and 

permittivity from the extracted data of MWS. An analytical and theoretical approximation 

for the effective permeability of an SRR as a function of frequency is [29] 

 

 
2

2
2 2 3

1
3 21

SRR
eff

o o o

r
da j

r r

πµ
σ

ε µ ω π µ ω

= −
 
− + 

 

 (4.11) 

 

where andr d are the same quantities as we described above, a  is the lattice constant 

(separation distance between the centers of the rings), and σ  is the resistance of the ring 

material. In our model a =8 mm and 0.0155S/mσ = . A plot of ( )SRR
eff fµ  as a function of 

the frequency in GHz is shown in Figure 22. In the derivation of Equation (4.11), it was 

assumed that the rings are close together in a matrix so that the magnetic field lines 

approximate those in a continuous cylinder [29]. 
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Figure 22.   Effective permeability SRR
effµ for r =0.8 mm, a =8 mm, d =0.2 mm and 

0.0155S/m.σ =  

The red line is the real part of the effective permeability and the blue line is the 

imaginary part, respectively. From Figure 22 we notice that the resonant frequency at 

which the effective magnetic permeability becomes negative and the left-handed behavior 

becomes evident is around 6.4 GHz for the SRR. The expression for the resonant 

frequency in GHz for the SRR is [28] 

 
2 3

9

3

(GHz).
2 10

o oSRR
res

d
r

f
µ ε π
π

=  (4.12) 

 

Using this information for the model 2, we ran the simulation for three different 

cases. In each case, we used different boundary conditions in order to calculate the 

resonant frequency and to compare this frequency with the theoretical one.  
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a. Case I-Electric and Magnetic Boundaries 

In first case, we set up open in the -x  direction, electric 0tE =  in the -y  

direction and magnetic tH =0 in the -z  direction. The plane waves propagate in the 

negative z  direction. The boundary conditions that were used are shown in Figure 23. 

 

Figure 23.   Boundary conditions for Model 2 Case I. 

Running this simulation in MWS, we get the -S parameter magnitudes 

11 21andS S  in dB shown in Figures 24 and 25, respectively. 
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Figure 24.   11S  magnitude in dB versus frequency for Model 2 Case I. 

 

Figure 25.   21S  magnitude in dB versus frequency for Model 2 Case I. 

The simulation results are very sensitive to the setting of “mesh cells” in 

MWS. Different mesh cells can generate slightly different resonant frequencies. One way 

to avoid this uncertainly is to use the function “adaptive mesh refinement” in MWS. This 

function is able to calculate the S -parameters with different mesh cells until the 

difference between the S -parameters is less than the specified value. This method can 

ensure that the mesh size is small enough to make the result stable. 

The extracted permittivity, permeability, index of refraction, and 

impedance are shown in Figures 26 through 29. 
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Figure 26.   Extracted permeability of Model 2 Case I. 

 

Figure 27.   Extracted permittivity of Model 2 Case I.  
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Figure 28.   Extracted index of refraction of Model 2 Case I.  

 

Figure 29.   Extracted impedance of Model 2 Case I. 
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The extracted constitutive parameters, index of refraction, and impedance 

of the material are very close to the published data [28]. Moreover, the simulated 

parameters are very close to the published data (the resonant frequency is close to 4.86 

GHz as in [28] and [29]). Because the authors do not refer to any details about the 

meshing parameters that they used, the final results are not identical to the published data, 

but they appear to be very close (by inspection). 

b. Case II-Open Boundaries 

In the second case, we set up open (add space) in the -x direction, open 

(add space) in the -y direction and open in the -z direction, as shown in Figure 30. The 

model with these boundary conditions is shown in Figure 31. The calculated -S

parameters 11 21andS S  from MWS in dB are given in Figures 32 and 33, respectively. 

 

Figure 30.   Boundary Conditions for Model 2 in Case II. 
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Figure 31.   Model 2 case II. 

 

Figure 32.   11S  magnitude in dB versus frequency for Model 2 Case II. 
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Figure 33.   21S  magnitude versus frequency for Model 2 Case II. 

The extracted permittivity, permeability, index of refraction, and 

impedance were not calculated because the scattering parameters are for only an isolated 

ring in free space. The scattering in this case is entirely different from what it would be 

for the CPR in a matrix. As shown in Figure 37, the resonant frequency for the calculated 

21S  parameter from MWS is  very close to 4.86 GHz, which is the same as calculated in 

Case I.  

c. Case III-Unit Cell 

For the last case for this model, we set up unit cells in the -x direction, unit 

cells in the -y direction and open in the -z direction. Note that the model has been rotated 

compared to the previous case. This is because the unit cells can only be excited from 

Floquet ports max minandZ Z at the top and bottom of the model. Each unit cell is square 

with a cell dimension of a l= =8 mm. The model and the boundary conditions that are 

used are shown in Figures 34 and 35, respectively. 
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Figure 34.   Model 2 for Case III built in MWS with SRR and square unit cell with side 
with length 8 mm. 
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Figure 35.   Boundaries conditions for Model 2 Case III 

The calculated S -parameters 11 21andS S  from the MWS in dB are given in 

Figures 36 and 37, respectively. 

 

Figure 36.   11S  magnitude in dB for Model 2 Case III. 
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Figure 37.   21S  magnitude in dB versus frequency for Model 2 Case III. 

The extracted permittivity, permeability, index of refraction, and 

impedance are shown in Figures 38 through 41. 

 

Figure 38.   Extracted permeability of Model 2 Case III. 
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Figure 39.   Extracted permeability of Model 2 Case III. 

 

Figure 40.   Extracted index of refraction of Model 2 Case III. 
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Figure 41.   Extracted impedance of Model 2 Case III. 

For Case III of this model, we notice that the resonant frequency is close to 

the calculated resonant frequency of MWS and the published data and has a value 4.916 

GHz. That means that the simulation works correctly, but a problem appeared in the 

extraction of the constitutive parameters. Notice from Figure 38 that the curve for the real 

part is the same as the theoretical value of the imaginary part. Many test cases were 

executed for this model by changing the range of frequency, the adaptive parameters, the 

number of Floquet modes (tests executed for mode 1 through mode 25) and the distance 

to the reference plane and essentially the same results were obtained. 

3. Model 3 

The third model that was used to test the effectiveness of the extraction program is 

based on the same CPR structure proposed in [30]. The dielectric slab has the same 

dimensions as Model 2, but the dimensions of SRR are different in this construction. 

More specifically, the inner ring radius r  of the SRR is 2 mm, the ring width c  is 1 mm, 

the radial gap width between the rings d  is 0.1 mm and the dielectric thickness t  is 0.216 

mm. Model 3 is shown in Figure 42. 
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Figure 42.   Model 3- SRR with r =2 mm, d =0.1mm, c =1 mm and t =0.216 mm. 

Using the theoretical background of [30], we arrive that the effective magnetic 

permeability for SRR is given by Equation (4.11).The resonant frequency at which SRR
effµ  

becomes negative is given by Equation (4.12). 

For Model 3, we calculate the resonant radian frequency to be 
217.1 10 rad/secoω = × and, thus, the resonant frequency is 13.5 GHz. From Equation 

(4.12) we notice that the resonant frequency scales uniformly with size; if we double the 

size of all elements in a given structure, the resonant frequency halves. This observation is 

shown in Figures 43 and 44, in which we plot the SRR
effµ  for a SRR with two different 

values for the resistance of the ring material ( 1σ =200 for copper rings and 2σ  for 

resistive rings). The result is that the resonant frequency appears at 13.5 GHz in both 

cases. In both figures the red lines represent the real part of SRR
effµ  and the blue lines the 

imaginary part, respectively. 
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Figure 43.   Plot of SRR
reffµ  for Model 3 using cooper rings 1σ =200 S/m. 

 

Figure 44.   Plot of SRR
reffµ  for Model 3 using resistive rings  1σ  =2000 S/m.  
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Using these dimensions for the Model 3, we ran the simulation for two different 

cases, using different boundary conditions in order to calculate the resonant frequency and 

to check this frequency with the theoretical result. 

a. Case I-Electric and Magnetic Boundaries 

In this case, we set up open in the -x direction, 0tE =  in the -y direction 

and tH =0 in the -z direction, as shown in Figure 45. 

 

Figure 45.   Boundary conditions for Model 3 Case I. 

Running this simulation, we obtained the results in Figures 46 and 47 for 

the S -parameters 11 21andS S in dB, respectively. 
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Figure 46.   11S  magnitude in dB versus frequency for Model 3 Case I. 

 

Figure 47.   21S  magnitude in dB versus frequency for Model 3 Case I. 

The extracted permittivity, permeability, index of refraction, and 

impedance are shown in Figures 48 through 51. 
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Figure 48.   Extracted permeability of Model 3 Case I. 

 

Figure 49.   Extracted permittivity of Model 3 Case I. 
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Figure 50.   Extracted index of refraction of Model 3 Case I. 

 

Figure 51.   Extracted impedance of Model 3 Case I. 
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From Figure 46, we see that the calculated resonant frequency for the 21S  

parameter is close to 9.8 GHz, and from the extracted constitutive parameters we notice 

that the resonant frequency is close to the same value. In the published data, the authors 

do not refer any calculated values for the S -parameters from MWS or for the extracted 

constitutive parameters. They refer only to the theoretical resonant frequency value, 

which is 13.5 GHz. Because we calculated the same resonant frequency both from 21S  

and the extracted permittivity and permeability, the final results are not identical to the 

published data, although they are correct. 

b. Case II-Unit Cell    

In this second case for this model, we set up a unit cell in the  -x direction, 

a unit cell in the -y direction and open in the -z direction. Each unit cell has dimensions 

of a =10 mm and l =2 mm and is placed in each side of the SRR in the negative -z
direction. The model and the boundary conditions that are used are shown in Figures 52 

and 53, respectively.  

 

Figure 52.   Model 3 Case II. 
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Figure 53.   Boundary conditions for Model 3 Case II. 

Running this simulation, we obtained the results in Figures 54 and 55 for 

the S -parameters 11 21andS S  in dB, respectively. 

 

Figure 54.   11S  magnitude in dB versus frequency for Model 3 Case II. 
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Figure 55.   21S  magnitude in dB versus frequency for Model 3 Case II. 

The extracted permittivity, permeability, index of refraction, and 

impedance are shown in Figures 56 through 59. 

 

 

Figure 56.   Extracted permeability of Model 3 Case II. 
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Figure 57.   Extracted permittivity of Model 3 Case II. 

 

Figure 58.   Extracted index of refraction of Model 3 Case II. 
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Figure 59.   Extracted impedance of Model 3 Case II. 

In this model, we saw the same problems as those that appeared in Model 2 

Case III. Again, we obtained incorrect curves for the permeability, but the calculated 

resonant frequency is about 10 GHz and coincides with the resonant frequency of the 

extracted constitutive parameters. 

D. SUMMARY 

In this chapter, three models were used to extract the permeability and permittivity 

from the -parameters. The formula used was based on the free space environment, and 

many different boundary conditions were used in order to check the calculated -

parameters. The calculated -parameters were used in a MATLAB program in order to 

extract the constitutive parameters. The resonant frequency is very sensitive to the number 

of mesh cells and the dimensions of the model; therefore, it is helpful to have the 

simulation, the measurements and the published data for comparison purposes. The above 

models have shown that the extraction program can work for normal and MTMs.  
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Problems were encountered with the unit cell boundary conditions. The extracted data 

were not as expected. This should be investigated in future research. There may be some 

additional phase weights that have to be applied to the Floquet results before the 

extraction can be perfomed.  
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V. CONCLUSION 

A. SUMMARY AND CONCLUSIONS 

The basic concept and the unusual characteristics of MTMs were discussed in this 

thesis. Based on this introduction, the unusual properties of DNG were discussed, and an 

analysis of each property was presented. A classification of lossy materials depending on 

the signs of  and  was defined in terms of  and  parameters. We classified the 

different types of MTMs according to the triads of RH and LH. 

In the first part of this research, an analysis of zero specular absorbers was 

presented, and all the equations related to specular absorbers were analyzed based on 

transmission line theory. Numerical solutions of the equations were used to generate the 

universal design curves for zero specular reflection layers. A solution of the 

transcendental equation resulting from our analysis was given for a PEC backing. 

Moreover, a solution for the transcendental equation for both DPS and DNG layers was 

programmed in MATLAB 7.4 in order to characterize the behavior of metamaterials. The 

results showed that both a DPS and a DNG layer follow similar curves of the universal 

design chart, and that the DNG solution is the complex conjugate of the DPS solution for 

the same anda b values. Thus, symmetry between DPS and DNG solutions was obtained. 

In the second part of this thesis, a retrieval program was used to extract the 

permittivity and permeability of MTM models that were simulated in MWS. The 

equations for the -parameters in a free space environment were described and 

programmed in MATLAB. Different types of materials, including “normal” material and 

MTMs, were simulated in MWS, and the results were exported to the MATLAB program 

in order to calculate the real and the imaginary parts of the permittivity, permeability, 

index of refraction and impedance. The results were compared with published data. The 

resonant frequency of the results and its relationship to the dimensions of the models were 

found to agree. 

rε ′ rµ′ A B

S
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It was shown that the key parameters for a successful retrieval was the correct 

selection of the number of mesh cells used at the simulation staring point, the dimensions 

of the model, the boundary condition setting in MWS and the background materials. 

The results using simulated scattering parameters were in good agreement with 

available published data when electric and magnetic boundaries were used in MWS. 

Agreement was not good when using unit cell boundaries and Floquet modes. This 

discrepancy is likely due to the form of the Floquet mode fields and how they are 

converted to scattering parameter data for use in the Matlab script. This should 

investigated further in subsequent research. 

B. FUTURE WORK 

In this thesis, DPS and DNG materials were used to examine the solutions of 

transcendental equation based on the transmission line theory. SNG materials were not 

included. Due to the sign ambiguity of the product of the square root µε± , the right 

decision of the sign is crucial when using SNG materials. Future research could address 

SNG materials in order to generate the universal design chart and to determine whether 

there is any symmetry in the solutions of the transcendental equation between DPS-DNG 

and SNG. 

Furthermore, future work should include SNG materials to examine the retrieval 

programs. Based on the scattering parameters, it should be possible to extract parameters 

for SNG materials. 

Finally, future work should include an investigation of the CST simulations with 

unit cell boundaries to determine the source of error in the extracted andµ ε . 
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APPENDIX 

A. MATLAB CODE FOR UNIVERSAL CHART 

The MATLAB code used to generated the universal curves for DPS and DNG 

layers in Chapter III is provided in this section. The code is written in MATLAB 7. This 

code plots a sample universal curve for fixed values of andα β , the solution of 

transcendental equation for both DPS and DNG layers and the solutions in A B−  space. 

 
% solve transcendental equation for matched RAM layer over PEC backing 
% generate a curve on the universal chart 
% USING EXPLICIT SIGNS IN z for DNG block 
clear 
clc 
% set tan delta curve 
tandel=2; 
% 'a' positive values 
A=logspace(-3,1,500); 
% 'b' positive values for search  
B=A*tandel;   
N=length(A); 
Tol=1e-20;  % fsolve tolerance 
SOL='DPS';  % solve for DPS with PEC backing 
% start of search range for each curve 
if SOL=='DNG', x_est=0; y_est=0; end 
if SOL=='DPS', x_est=0; y_est=0; end 
msg=['Computing...'];              
hwait=waitbar(0,msg); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for DPS case 
if SOL=='DPS' 
    for n=1:N 
        waitbar(n/N,hwait); 
% a and b are POSITIVE in the transcendental equation 
        a=A(n); 
        b=B(n); 
        [z fval]=fsolve(@(X) transcend_DPS_PEC_pos(X,a,b), [x_est; 
y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
% save values for check 
        x(n)=z(1); 
        y(n)=-z(2);   
        W(n)=x(n)+j*y(n);   % this is x-j*y 
        zz(n)=z(1)+j*z(2); 
        Z(n)=sqrt(zz(n)/(a-j*b)); 
        G=sqrt((a-j*b)*zz(n));  
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        Gam(n)=G*j; 
% Lee and Park A and B parameters  
        AA(n)=x(n)*a-y(n)*b; 
        BB(n)=y(n)*a+b*x(n); 
    end 
close(hwait); 
% single panel plot 
    figure(1) 
    clf 
    subplot(221) 
    loglog(x,y,'xk') 
    xlabel('x=t/\lambda*\mu_r_e_a_l') 
    ylabel('y=t/\lambda*\mu_i_m_a_g') 
    title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
    subplot(222) 
    plot(real(zz),imag(zz),'ko') 
    title([num2str(SOL),' solution, z=z_1+jz_2, z_1=x, z_2=-y']) 
    xlabel('real part, z_1 or x') 
    ylabel('imaginary part, z_2 or -y') 
    subplot(223) 
    plot(real(Gam),imag(Gam),'ko') 
    title([num2str(SOL),' propagation constant \gamma=\alpha+j\beta']) 
    xlabel('\alpha, Np/m') 
    ylabel('\beta, rad/m') 
    subplot(224) 
    plot(BB,AA,'k+') 
    title('A-B classification space') 
    ylabel('(t/\lambda) A') 
    xlabel('(t/\lambda) B') 
    Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
end     % end of DPS block 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for DNG case 
if SOL=='DNG' 
    for n=1:N 
        waitbar(n/N,hwait); 
% a and b are the negative of these values in the transcendental 
equation 
        a=A(n); 
        b=B(n); 
        [z fval]=fsolve(@(X) transcend_DNG_PEC_neg(X,a,b), [x_est; 
y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
% save values for check 
        x(n)=z(1);    % let x be negative 
        y(n)=z(2); 
        W(n)=-x(n)-j*y(n);   % both x and y are positive 
        zz(n)=-z(1)-j*z(2);   % solution to equation 
        Z(n)=sqrt(-zz(n)/(-a-j*b)); 
        if real(Z(n))<0, Z(n)=-Z(n); end 
        G=sqrt(zz(n)*(-a-j*b)); 
% choose solution with positive alpha 
        Gam(n)=G*j; 
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        if real(G*j)<0, G=-G; Gam(n)=-Gam(n); end    % alpha > 0 always 
% Lee and Park A and B parameters  
        AA(n)=x(n)*a-y(n)*b;  % for new solution x<0 for DNG 
        BB(n)=-y(n)*a-b*x(n); 
    end 
close(hwait); 
% single panel plot 
    figure(2) 
    clf 
    subplot(221) 
    loglog(x,y,'xk') 
    xlabel('x=t/\lambda*\mu_r_e_a_l') 
    ylabel('y=t/\lambda*\mu_i_m_a_g') 
    title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
    subplot(222) 
    plot(real(zz),imag(zz),'ko') 
    title([num2str(SOL),' solution, z=z_1+jz_2, z_1=-x, z_2=-jy']) 
    xlabel('real part, z_1 or -x') 
    ylabel('imaginary part, z_2 or -y') 
    subplot(223) 
    plot(real(Gam),imag(Gam),'ko') 
    title([num2str(SOL),' propagation constant \gamma=\alpha+j\beta']) 
    xlabel('\alpha, Np/m') 
    ylabel('\beta, rad/m') 
    subplot(224) 
    plot(BB,AA,'k+') 
    title('A-B classification space') 
    ylabel('(t/\lambda) A') 
    xlabel('(t/\lambda) B') 
    Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
end     % end of DNG block 
% saving final data for checking the solution manually 
% column vectors of a, b, z1, z2, alpha, beta 
K=[A.' B.' zz.' Gam.'];   

B. MATLAB CODE FOR DPS PEC 

The MATLAB code used to solve the transcendental function for DPS_PEC 

materials is provided below: 
function F=transcend_DPS_PEC_pos(X,a,b) 
% a and b are POSITIVE (DPS) 
% create complex value from real and imaginary parts 
z=X(1,:)+j*X(2,:); 
% choose sign of impedance with positive resistance 
Z=sqrt(z/(a-j*b));  
if real(Z)<0, Z=-Z; end 
% choose solution with positive alpha 
G=sqrt((a-j*b)*z);     
f=Z*tanh(j*2*pi*G)-1;       % using tanh (no dif with tan) 
% separate real and imaginary parts 
F=[real(f); imag(f)];  
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C. MATLAB CODE FOR DNG PEC 

The MATLAB code used to solve the transcendental function for DNG_PEC 

materials is provided below: 
function F=transcend_DNG_PEC_neg(X,a,b) 
% a and b are POSITIVE  
% create complex value from real and imaginary parts 
z=-X(1,:)-j*X(2,:); 
% choose sign of impedance with positive resistance 
Z=sqrt(z/(-a-j*b));  
if real(Z)<0, Z=-Z; end 
% choose solution with positive alpha 
G=sqrt(z*(-a-j*b));        % explicit Gam not needed 
if real(G*j)<0, G=-G; end  % insures the correct sign (-) 
f=Z*tanh(j*2*pi*G)-1;  
% separate real and imaginary parts 
F=[real(f); imag(f)];  
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